Emergence of deletions during treadmill locomotion as a function of supraspinal and sensory inputs.

نویسندگان

  • Marina Martinez
  • Marius Tuznik
  • Hugo Delivet-Mongrain
  • Serge Rossignol
چکیده

During locomotion, alternating activity of flexor and extensor muscles is largely regulated by a spinal neuronal network, the central pattern generator, the activity of which is modulated by peripheral and supraspinal inputs. In the absence of these modulatory inputs, for example during fictive locomotion after spinalization and curarization, spontaneous failures of motor activation (deletions) in a muscle can occur without perturbing the rhythmic cycle structure of the antagonists on the same side or the contralateral side. This suggests that the central pattern generator can maintain the locomotor period when motoneuron discharges fail in a given pool of motoneurons. Here we first examined whether such deletions could occur during real locomotion on a treadmill and determined their consequences on the overt locomotor pattern. We also evaluated the role of supraspinal and sensory inputs in modulating the occurrence of failures of rhythmic activity by comparing the same cats in the intact state, then after a partial spinal cord injury (SCI), and finally after a complete SCI at different treadmill speeds. We showed that deletions: (1) are absent in intact animals and occur only after SCI; (2) affect only flexor muscle activity; (3) neither perturb the timing of rhythmic activity of these muscles in subsequent cycles nor interfere with the timing of the ipsilateral and contralateral agonists and antagonists; (4) do not affect significantly the locomotor pattern kinematics; and (5) are sensitive to treadmill speed and lesion severity, suggesting a role for sensory and supraspinal inputs in stabilizing rhythmic output activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric changes in cutaneous reflexes after a partial spinal lesion and retention following spinalization during locomotion in the cat.

Locomotion involves dynamic interactions between the spinal cord, supraspinal signals, and peripheral sensory inputs. After incomplete spinal cord injury (SCI), interactions are disrupted, and remnant structures must optimize function to maximize locomotion. We investigated if cutaneous reflexes are altered following a unilateral partial spinal lesion and whether changes are retained within spi...

متن کامل

Spinal and supraspinal control of the direction of stepping during locomotion.

Most bipeds and quadrupeds, in addition to forward walking, are also capable of backward and sideward walking. The direction of walking is determined by the direction of stepping movements of individual limbs in relation to the front-to-rear body axis. Our goal was to assess the functional organization of the system controlling the direction of stepping. Experiments were performed on decerebrat...

متن کامل

Central pattern generation of locomotion: a review of the evidence.

Neural networks in the spinal cord, referred to as "central pattern generators" (CPGs), are capable of producing rhythmic movements, such as swimming, walking, and hopping, even when isolated from the brain and sensory inputs. This article reviews the evidence for CPGs governing locomotion and addresses other factors, including supraspinal, sensory, and neuromodulatory influences, that interact...

متن کامل

Incomplete spinal cord injury promotes durable functional changes within the spinal locomotor circuitry.

While walking in a straight path, changes in speed result mainly from adjustments in the duration of the stance phase while the swing phase remains relatively invariant, a basic feature of the spinal central pattern generator (CPG). To produce a broad range of locomotor behaviors, the CPG has to integrate modulatory inputs from the brain and the periphery and alter these swing/stance characteri...

متن کامل

Title: Incomplete Spinal Cord Injury Promotes Durable Functional Changes within the Spinal 1 Locomotor Circuitry 2 Groupe De Recherche Sur Le Système Nerveux Central (frsq) And

32 While walking in a straight path, changes in speed result mainly from adjustments in the 33 duration of the stance phase while the swing phase remains relatively invariant, a basic feature of 34 the spinal central pattern generator (CPG). To produce a broad range of locomotor behaviors, the 35 CPG has to integrate modulatory inputs from the brain and the periphery and alter these 36 swing/st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 28  شماره 

صفحات  -

تاریخ انتشار 2013